Improving Sentiment Analysis Through Ensemble Learning of Meta-level Features

نویسندگان

  • Rana Alnashwan
  • Adrian O'Riordan
  • Humphrey Sorensen
  • Cathal Hoare
چکیده

In this research, the well-known microblogging site, Twitter, was used for a sentiment analysis investigation. We propose an ensemble learning approach based on the meta-level features of seven existing lexicon resources for automated polarity sentiment classification. The ensemble employs four base learners (a Two-Class Support Vector Machine, a Two-Class Bayes Point Machine, a Two-Class Logistic Regression and a Two-Class Decision Forest) for the classification task. Three different labelled Twitter datasets were used to evaluate the effectiveness of this approach to sentiment analysis. Our experiment shows that, based on a combination of existing lexicon resources, the ensemble learners minimize the error rate by avoiding poor selection from stand-alone classifiers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study of Dependency Features for Chinese Sentiment Classification

Syntactic dependency features, which encode long-range dependency relations and word order information, have been employed in sentiment classification. However, much of the research has been done in English, and researches conducted on exploring how features based on syntactic dependency relations can be utilized in Chinese sentiment classification are very rare. In this study, we present an em...

متن کامل

Biocom Usp: Tweet Sentiment Analysis with Adaptive Boosting Ensemble

We describe our approach for the SemEval-2014 task 9: Sentiment Analysis in Twitter. We make use of an ensemble learning method for sentiment classification of tweets that relies on varied features such as feature hashing, part-of-speech, and lexical features. Our system was evaluated in the Twitter message-level task.

متن کامل

Sentiment Classification of Arabic Documents: Experiments with multi-type features and ensemble algorithms

Document sentiment classification is often processed by applying machine learning techniques, in particular supervised learning which consists basically of two major steps: feature extraction and training the learning model. In the literature, most existing researches rely on n-grams as selected features, and on a simple basic classifier as learning model. In the context of our work, we try to ...

متن کامل

Ensemble classifier for Twitter sentiment analysis

In this paper, we present a combination of different types of sentiment analysis approaches in order to improve the individual performance of them. These ones consist of (I) ranking algorithms for scoring sentiment features as bi-grams and skip-grams extracted from annotated corpora; (II) a polarity classifier based on a deep learning algorithm; and (III) a semi-supervised system founded on the...

متن کامل

A Study of Meta-Learning in Ensemble Based Classifier

-The idea of ensemble methodology is to build a predictive model by integrating multiple models. It is wellknown that ensemble methods can be used for improving prediction performance. Researchers from various disciplines such as statistics and AI considered the use of ensemble methodology. Meta-learning is a technique that seeks to compute higher-level classifiers (or classification models), c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016